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Abstract

This paper introduces a novel framework for modeling interacting humans in a
multi-stage game environment by combining concepts from game theory and re-
inforcement learning. The proposed model has the following desirable charac-
teristics: (1) Bounded rational players, (2) strategic (i.e., players account for one
another’s reward functions), and (3) is computationally feasible even on moder-
ately large real-world systems. To do this we extend level-K reasoning to policy
space to, for the first time, be able to handle multiple time steps. This allows us to
decompose the problem into a series of smaller ones where we can apply standard
reinforcement learning algorithms. We investigate these ideas in a cyber-battle
scenario over a smart power grid and discuss the relationship between the behav-
ior predicted by our model and what one might expect of real human defenders
and attackers.

1 Introduction

We present a model of interacting human beings that advances the literature by combining con-
cepts from game theory and computer science in a novel way. In particular, we introduce the first
time-extended level-K game theory model [1, 2]. This allows us to use reinforcement learning (RL)
algorithms to learn each player’s optimal policy against the level K — 1 policies of the other players.
However, rather than formulating policies as mappings from belief states to actions, as in partially
observable Markov decision processes (POMDPs), we formulate policies more generally as map-
pings from a player’s observations and memory to actions. Here, memory refers to all of a player’s
past observations.

This model is the first to combine all of the following characteristics. First, players are strategic in
the sense that their policy choices depend on the reward functions of the other players. This is in



Figure 1: An example semi Bayes net. Figure 2:  An example iterated semi
Bayes net.

contrast to learning-in-games models whereby players do not use their opponents’ reward informa-
tion to predict their opponents’ decisions and to choose their own actions. Second, this approach
is computationally feasible even on real-world problems. This is in contrast to equilibrium models
such as subgame perfect equilibrium and quantal response equilibrium [3]. This is also in contrast to
POMDP models (e.g. [-)POMDP) in which players are required to maintain a belief state over spaces
that quickly explode. Third, with this general formulation of the policy mapping, it is straightfor-
ward to introduce experimentally motivated behavioral features such as noisy, sampled or bounded
memory. Another source of realism is that, with the level-K model instead of an equilibrium model,
we avoid the awkward assumption that players’ predictions about each other are always correct.

We investigate all this for modeling a cyber-battle over a smart power grid. We discuss the rela-
tionship between the behavior predicted by our model and what one might expect of real human
defenders and attackers.

2 Game Representation and Solution Concept

In this paper, the players will be interacting in an iterated semi net-form game. To explain an iterated
semi net-form game, we will begin by describing a semi Bayes net. A semi Bayes net is a Bayes
net with the conditional distributions of some nodes left unspecified. A pictoral example of a semi
Bayes net is given in Figure 1. Like a standard Bayes net, a semi Bayes net consist of a set of nodes
and directed edges. The ovular nodes labeled “S” have specified conditional distributions with the
directed edges showing the dependencies among the nodes. Unlike a standard Bayes net, there are
also rectangular nodes labeled “U” that have unspecified conditional dependencies. In this paper,
the unspecified distributions will be set by the interacting human players. A semi net-form game,
as described in [4], consists of a semi Bayes net plus a reward function mapping the outcome of the
semi Bayes net to rewards for the players.

An iterated semi Bayes net is a Bayes net which has been time extended. It comprises of a semi
Bayes net (such as the one in Figure 1), which is replicated 7" times. Figure 2 shows the semi Bayes
net replicated three times. A set of directed edges L sets the dependencies between two successive
iterations of the semi Bayes net. Each edge in L connects a node in stage ¢ — 1 with a node in stage
t as is shown by the dashed edges in Figure 2. This set of L nodes is the same between every two
successive stages. An iterated semi net-form game comprises of two parts: an iterated semi Bayes
net and a set of reward functions which map the results of each step of the semi Bayes net into an
incremental reward for each player. In Figure 2, the unspecified nodes have been labeled “U,4” and
“Up” to specify which player sets which nodes.

Having described above our model of the strategic scenario in the language of iterated semi net-form
games, we now describe our solution concept. Our solution concept is a combination of the level-K
model, described below, and reinforcement learning (RL). The level-K model is a game theoretic



solution concept used to predict the outcome of human-human interactions. A number of studies
[1, 2] have shown promising results predicting experimental data in games using this method. The
solution to the level-K model is defined recursively as follows. A level K player plays as though all
other players are playing at level K — 1, who, in turn, play as though all other players are playing
at level K — 2, etc. The process continues until level 0 is reached, where the level O player plays
according to a prespecified prior distribution. Notice that running this process for a player at K > 2
results in ricocheting between players. For example, if player A is a level 2 player, he plays as
though player B is a level 1 player, who in turn plays as though player A is a level O player playing
according to the prior distribution. Note that player B in this example may not actually be a level 1
player in reality — only that player A assumes him to be during his reasoning process.

This work extends the standard level-K model to time-extended strategic scenarios, such as iterated
semi net-form games. In particular, each Undetermined node associated with player ¢ in the iterated
semi net-form game represents an action choice by player ¢ at some time ¢. We model player i’s
action choices using the policy function, p;, which takes an element of the Cartesian product of
the spaces given by the parent nodes of i’s Undetermined node to an action for player i. Note that
this definition requires a special type of iterated semi-Bayes net in which the spaces of the parents
of each of ¢’s action nodes must be identical. This requirement ensures that the policy function is
always well-defined and acts on the same domain at every step in the iterated semi net-form game.
We calculate policies using reinforcement learning (RL) algorithms. That is, we first define a level
0 policy for each player, p?. We then use RL to find player i’s level 1 policy, p}, given the level 0
policies of the other players, p” |, and the iterated semi net-form game. We do this for each player i
and each level K.!

3 Application: Cybersecurity of a Smart Power Network

In order to test our iterated semi net-form game modeling concept, we adopt a model for analyz-
ing the behavior of intruders into cyber-physical systems. In particular, we consider Supervisory
Control and Data Acquisition (SCADA) systems [5], which are used to monitor and control many
types of critical infrastructure. A SCADA system consists of cyber-communication infrastructure
that transmits data from and sends control commands to physical devices, e.g. circuit breakers in
the electrical grid. SCADA systems are partly automated and partly human-operated. Increasing
connection to other cyber systems creating vulnerabilities to SCADA cyber attackers [6].

Figure 3 shows a single, radial distribution circuit [7] from the transformer at a substation (node
1) serving two load nodes. Node 2 is an aggregate of small consumer loads distributed along the
circuit, and node 3 is a relatively large distributed generator located near the end of the circuit. In
this figure V;, p;, and ¢; are the voltage, real power, and reactive power at node i. P;, @Q;,r;, and
x; are the real power, reactive power, resistance and reactance of circuit segment . Together, these
values represent the following physical system [7], where all terms are normalized by the nominal
system voltage.

Py=—p3, Qa=—-q3, Pr=Po+p2, Q1 =Q2+ )]
Vo=V — (P14 21Q1), V3=V — (roPs +22Q2) 2

In this model, r, z, and p3 are static parameters, g and p, are drawn from a random distribution
at each step of the game, V] is the decision variable of the defender, g3 is the decision variable of
the attacker, and V5 and V3 are determined by the equations above. The injection of real power
p3 and reactive power g3 can modify the P; and (Q; causing the voltage V5 to deviate from 1.0.
Excessive deviation of V5 or V3 can damage customer equipment or even initiate a cascading failure
beyond the circuit in question. In this example, the SCADA operator’s (defender’s) control over g3
is compromised by an attacker who seeks to create deviations of V5 causing damage to the system.

In this model, the defender has direct control over V; via a variable-tap transformer. The hardware
of the transformer limits the defenders actions at time ¢ to the following domain

Dp(t) = (min(vmaz, Vi,i—1 + v), Vi—1, max(Vmin, Vi1 — v))

! Although this work uses level-K and RL exclusively, we are by no means wedded to this solution concept.
Previous work on semi net-form games used a method known as Level-K Best-of-M/M’ instead of RL to
determine actions. This was not used in this paper because the possible action space is so large.
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Figure 3: Schematic drawing of the three-node distribution circuit.

where v is the voltage step size for the transformer, and v;,;,, and v,,,4, represent the absolute min
and max voltage the transformer can produce. Similarly, the attacker has taken control of g3 and
its actions are limited by its capacity to produce real power, p3 ,,qz as represented by the following
domain.

D-A(t) = <_p3,maz7 .0, 7p3,maz>
Via the SCADA system and the attacker’s control of node 3, the observation spaces of the two
players includes

Qp ={V1,V5, V3, P, Q1,Mp}, Qu={Va,V5,p3,q3, M4}

where Mp and M 4 are used to denote each two real numbers that represent the respective player’s
memory of the past events in the game. Both the defender and attacker manipulate their controls in
a way to increase their own rewards. The defender desires to maintain a high quality of service by
maintaining the voltages V5 and V3 near the desired normalized voltage of one while the attacher
wishes to damage equipment at node 2 by forcing V5 beyond operating limits, i.e.

RD:—(‘@‘I)Q—(VZ’"I)Q, Ra=6[Va—(1+€)+6[(1-¢) Vi

€ €

Here, ¢ ~ 0.05 for most distribution system under consideration, © is a Heaviside step function.

Level 1 defender policy The level 0 defender is modeled myopically and seeks to maximize his
reward by following a policy that adjusts V; to move the average of V5 and V3 closer to one, i.e.

(Va+V3)

-1
2

mp(Va, V3) = arg miny, e p, (1)

Level 1 attacker policy The level 0 attacker adopts a drift and strike policy based on intimate
knowledge of the system. If Vo < 1, we propose that the attacker would decrease g3 by lowering
it by one step. This would cause () to increase and V5 to fall even farther. This policy achieves
success if the defender raises V; in order to keep V- and V3 in the acceptable range. The attacker
continues this strategy, pushing the defender towards v,,,4, until he can quickly raise g3 to push V5
above 1 + € . If the defender has neared v,,,4;, then a number of time steps will be required to for
the defender to bring V5 back in range. More formally this policy can be expressed as
LEVELOATTACKER ()

then return ¢3 ;_; — 1;
return gz ;1 + 1;

1 V* =maxgep, o V2 —1|;

2 V>0,

3 thenreturn argmax,cp ) |Vo — 1
4 ifVa <1

5

6

where 0 4 is a threshold parameter.

3.1 Reinforcement Learning Implementation

Using defined level O policies as the starting point, we now bootstrap up to higher levels by training
each level K policy against an opponent playing level K — 1 policy. To find policies that maximize
reward, we can apply any algorithm from the reinforcement learning literature. In this paper, we use



an e-greedy policy parameterization (with e = 0.1) and SARSA on-policy learning [8]. Training
updates are performed epoch-wise to improve stability. Since the players’ input spaces contain
continuous variables, we use a neural-network to approximate the Q-function [9]. We improve
performance by scheduling the exploration parameter € in 3 segments during training: An € of near
unity, followed by a linearly decreasing segment, then finally the desired e.

3.2 Results and Discussion

We present results of the defender and attacker’s behavior at various level K. We note that our
scenario always had an attacker present, so the defender is trained to combat the attacker and has no
training concerning how to detect an attack or how to behave if no attacker is present. Notionally,
this is also true for the attacker’s training. However in real-life the attacker will likely know that
there is someone trying to thwart this attack.

Level 0 defender vs. level 0 attacker The level 0 defender (see Figure 4(a)) tries to keep both
V5 and V3 close to 1.0 to maximize his immediate reward. Because the defender makes steps in V;
of 0.02, he does nothing for 30 < ¢ < 60 because any such move would not increase his reward.
For 30 < t < 60, the p2, g2 noise causes V5 to fluctuate, and the attacker seems to randomly drift
back and forth in response. At ¢ = 60, the noise plus the attacker and defender actions breaks
this “symmetry”, and the attacker increases his g3 output causing V5 and V3 to rise. The defender
responds by decreasing V7, indicated by the abrupt drops in V5 and V3 that break up the relatively
smooth upward ramp. Near ¢ = 75, the accumulated drift of the level O attacker plus the response
of the level 0 defender pushes the system to the edge. The attacker sees that a strike would be
successful (i.e., post-strike Vo < 1 — 6 4), and the level 0 defender policy fails badly. The resulting
V5 and V3 are quite low, and the defender ramps V; back up to compensate. Post strike (¢ >
75), the attackers threshold criterion tells him that an immediate second strike would would not be
successful, however, this shortcoming will be resolved via level 1 reinforcement learning. Overall,
this is the behavior we have built into the level O players.

Level 1 defender vs. level 0 attacker During the level 1 training, the defender likely experiences
the type of attack shown in Figure 4(a) and learns that keeping V; a step or two above 1.0 is a good
way to keep the attacker from putting the system into a vulnerable state. As seen in Figure 4(b), the
defender is never tricked into performing a sustained drift because the defender is willing to take
a reduction to his reward by letting V3 stay up near 1.05. For the most part, the level 1 defender’s
reinforcement learning effectively counters the level O attacker drift-and-strike policy.

Level 0 defender vs. level 1 attacker The level 1 attacker learning sessions correct a shortcoming
in the level O attacker. After a strike (Vo < 0.95 in Figure 4(a)), the level O attacker drifts up from
his largest negative g3 output. In Figure 4(c), the level 1 attacker anticipates that the increase in V5
when he moves from m = —5 to m = 5 will cause the level 0 defender to drop V; on the next move.
After this drop, the level 1 attacker also drops from m = +5 to —b. In essence, the level 1 attacker
is leveraging the anticipated moves of the level 0 defender to create oscillatory strikes that push V5
below 1 — € nearly every cycle.

Acknowledgments

This research was supported by the NASA Aviation Safety Program SSAT project, and the Los
Alamos National Laboratory LDRD project Optimization and Control Theory for Smart Grid.

References
[1] Miguel Costa-Gomes and Vincent Crawford. Cognition and behavior in two-person guessing games: An
experimental study. American Economic Review, 96(5):1737-1768, December 2006.

[2] Dale O. Stahl and Paul W. Wilson. On players’ models of other players: Theory and experimental evidence.
Games and Economic Behavior, 10(1):218 — 254, 1995.

[3] Richard Mckelvey and Thomas Palfrey. Quantal response equilibria for extensive form games. Experimen-
tal Economics, 1:9—41, 1998. 10.1023/A:1009905800005.



(4]

(]

(6]

(7]

(8]
(9]

Voltages

Attacker’s move (m)
O S S N R S S

90 100 " 10 20 3 40 5 6 70 8 90
Time step of game

0 10 20 30 40 50 60 70 80
Time step of game

100

(a) Level 0 defender vs. level O attacker

)
= Lo
/1 1111
T THIETET
\aiiian A
RN P

‘Ww H\[

Voltages

Attacker's move (m)

‘”/M i bl | i : Vo
My Y 'V\ VY i | | M i
| I/
S holl - ittt
Iy L
I

0 20 a0 40 s 0 70 B0 s 10 0 0 20 X 0 s e 70 8 s 10

Time step of game

|

Time step of game

(b) Level 1 defender vs. level 0 attacker

Voltages

Attacker’s move (m)

0 10 20 % 40 s w0 70 8 %
Time step of game

w0 o o 20 @ 40 s 60 7
Time step of game

(c) Level O defender vs. level 1 attacker

Figure 4: Voltages and attacker moves of various games.

Ritchie Lee and David H. Wolpert. Decision Making with Multiple Imperfect Decision Makers, chapter
Game Theoretic Modeling of Pilot Behavior during Mid-Air Encounters. Intelligent Systems Reference
Library Series. Springer, 2011.

K. Tomsovic, D.E. Bakken, V. Venkatasubramanian, and A. Bose. Designing the next generation of

real-time control, communication, and computations for large power systems. Proceedings of the IEEE,
93(5):965 —979, may 2005.

Alvaro A. Céardenas, Saurabh Amin, and Shankar Sastry. Research challenges for the security of control

systems. In Proceedings of the 3rd conference on Hot topics in security, pages 6:1-6:6, Berkeley, CA,
USA, 2008. USENIX Association.

K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov. Options for control of reactive power by distributed
photovoltaic generators. Proceedings of the IEEE, 99(6):1063 —1073, june 2011.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Lucian Busoniu, Robert Babuska, Bart De Schutter, and Ernst Damien. Reinforcement Learning and
Dynamic Programming Using Function Approximators. CRC Press, 2010.



